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The author has previously considered [2 ] the following system of
penduli, A Cartesian, right-handed coordinate system Oxyz rotates with
a constant angular velocity o about the z-axis, directed vertically
downward, At a point Al' lying on the horizontal y-axis at a distance
R from the origin 0, a heavy rod 4142 of length 2a and mass =, is
suspended such that OA1 will be the oscillation axis. Attached to the
end A2 of this rod is another heavy rod AZAB of the same length and
mass, with its oscillation axis parallel to O4 etc, Finally, at the
end An of the next to the last rod, the last rod AnAm_1 is suspended,
also restricted to oscillate about a line parallel to OAI, and whose
physical properties are the same as those of all the other rods, It
was shown in {2 ] that as long as the angular velocity satisfies the
condition

g
@< — ) (0.1}

appropriate initial conditions can be chosen so that this system of
penduli can undergo small periodic vibrations about the vertical
position, So long as (0.1) is satisfied, this vertical position will
be an equilibrium position of relative stability. Here an is the
lowest root of the equation
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Small periodic motions of two penduli 193

It was shown that the roots of equation (0.2) are not only negative,
but are also simple, If we denote by 0V (wv=1, ..., n) the angles
the rods form with the z-axis, and if we write 6V =A ¢b' then the
initial conditions for which the small periodic vibrations were ob-
tained are of the form

PrO)=-.=¢, 0 =0, $'O)=hu+bn., ¥, O =2,+3, (0.3)

Here the numbers A y eees A1n are given by the set of equations
v—1
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where p2 = a@ + g/xl. and xy is the largest root of equation (0.2).

If, however, one chooses initial conditions which do not depend on
the largest root of (0.2), the method suggested in the author’s
previous paper [ 2 ] cannot be always used to solve the problem., Let
us consider the case of two penduli, Let , be the smaller root of
equation (0.2) with n = 2, If equation (0.4) is used to obtain A
and Az with n = 2 and with p = o + g/xz, and if the initial con-
ditions are chosen as w- (0) = d (0) = 0, ¢ (0) = A21 + B and

2 “(0) = AZZ + 32, then the prev1ously proposed me thod will lead to
a solution only on the assuuption that

k,;: =0, ky=V (@' g/ =), i=1,2 (0.5)

It will be shown below that the condition given by (0.5) is not
always fulfilled. We shall call this a special case.

sin

In the present paper we show that with the appropriate initial con-
ditions the problem of the existence of small periodic vibrations has
a solution also in the above-mentioned special case, Bradistilov [3]
has treated the case of two physical penduli without rotation.

1. We shall first show that the special case may actually occur. The
roots of equation (0.2), with n= 2, are z, , = (-14 * 4¥7) a/9. Equa-
tion (0.1) for a@ can be written, when n = 2, in the form

02 <3g(VT—2)/2V7a 1.4
On the other hand, < )/ (1.1)

Ky =l/ 3¢(VT +2)—2aV7 w?

ks 3¢(VT—2)—2aV7T o?
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It is easily shown that this ratio cannot take on the integral values
0, 1, or 2, If, however, k is an integer greater than or equal to 3, and
if we choose

Cse [, 20241)
@ =t VT (2 —1)

(1.2)

then kl/k2 = k,which is the special case. We note that (1.2) does not con-
tradict (1.1). The set of differential equations becomes

$i" = i (91 doy 1, b2, ) (i=1,2) (1.3)
where f.(4, ¢%, wl', wz’, A) are completely defined functions. In the
case A = 0, equations (1.3) reduce to the simplified set of equations

16 16
S 2 (o 3L )y 2at g~ 0

. . (1.4)
21" A g by — (*3“ o = ) b= 20t 4y =0

Let us consider the particular solution of (1.4) with the initial con-
ditions

P10y = ¢ () =G, 17 (0) == Ro1 + KA1 IV, $2 (0) =hog + k0 NV

The numbers Ail and Aiz (where i = 1, 2) are given by equations (0.4)

with n = 2 and with p? = o + g/x, (with i = 1, 2). This solution is

A N Ko
1i ; 2i
b (1) = k2 sin kkot 4~ . sin kot

g (1) =2y N koS khest + Nyy cos kot (i=1, 2) (1.5)

The solution given by (1.5) is obviously periodic with period 2n/k2.
We shall now show that it is possible to choose B, 6, and N so that the
solution of (1.3) with initial conditions

$1(0) = 2 (0)y =0, 17 (0) = Aoy + Ixgy (N 4 5), P2 (0) = Ago + KRy (N 4~ 8) {1.6)

be periodic with period 2(m + 3)/k2. According to a fundamental theorem
of Poincaré. the solution of (1.3) with initial conditions (1.6) can be
written as

Gy (8, 8,0 =g () + P () B+2[Q O+ R () + -]

(i=1,2) (1.7
Gy (63,0 = by () + Py (03 4221Q () + By (9 B+ -]

Inserting (1.7) into (1.3) and equating the coefficients of B. Az,
and A?B3, we obtain a set of differential equations for the functions
Pi(t)' Qi(t), and Ri(t). Here we make use also qof the initial conditions
(1.6). We then calculate Qi(n/kz). and Ri(ﬂ/kz).

2. The differential equations of motion have the property that if
Y, (t) is a solution, then so is - Y, (2¢ — t). Therefore {11, if the
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conditions
Yi(=0 (=12 (2.1)

are satisfied, one may assert that there exists a periodic solution with
period 2¢. In our case g = (7 + 5)/k2, and therefore conditions (2.1)
become

8
W5 8 0)=0 =12 2.2)
or, with (1.7),

a

)‘2i . ealV
__kg—51n8+T L smk8+

sin k33 4

+x2[Qi(”+8)+R (“+8\3 -.]=o (2.3)

Here €, is +1 or -1 depending on whether k is even or odd. Expanding
(2.3) in a power series in &, we obtain

I s L SEp

+x[ ( )+R<k2)ﬁ+ ]:0 (i =1,2) (2.4)

This set of equations will be satisfied by values of & and A? in the
neighborhood of the point § = 8= A = 0, if the equation

(_)’;—2214_521:1‘1:-{— A k34 . )[Q2( )+Rz< >B+ ]

(2.9)
)\22 €2N (
—\— k2+ ks )\12k+k Az k3 4 - )Ql >+Rl k2)3+"']=
is also satisfied.
Equation (2.5) can be used to determine 3 if the conditions
A e NV hd A N T
(— ;:1 + ; M1k )Qz<_')—(— 132 + & 7 ks M2 )Ql(—k;‘)=0 (2.6)
kgl EnN 7Ty )\22 EgN T
(* PR k)Rz(kz) (‘ B TR “”)’“(E)WL
Eah1 T
+ jcn kQ, 752“) kQ1(—k2‘)=,—"0 2.7

are satisfied.

We can determine the parameter N from (2.6). If k> 3, calculations
show that (2.6) is an equation of third degree with respect to N. In
addition, it is found that one of the roots of this equation vanishes,
and that the other two are determined by the equation

z (k) N* 4y (k) = 0 (2.8)

where _ _ e
w (k%) = 18 (1568—571 V'7) kt + (229464-19691 V7 Y k2 4- 9 (259 V' 7 - 910)
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y (k) = 9 (910—259 V'7) k* - (22946—19691 V7 y k2 4 18 (571 VT -+ 1568)

Obviously x(k’) > 0. Since k is an integer greater than 3, K > 16.

Direct verification shows that y(k2 = 16) > 0., On the other hand y(kz)
is a quadratic function of k% and therefore increases monotonically fox

19601 V'7 — 22948
18 (910—259V'7)

The number on the right-hand side, however, is less than 16, There-
fore y(kz) > G, which means that the only real root of (2.8) is N= 0.

B>

Condition (2.7) is obtained from (2.6} by differentiating with
respect to the parameter N, which leads teo
3z (BB N2 4y (k%) £ 0 2.9
If N= 0, the latter condition is satisfied, since y(kz) > 0, Thus
the results obtained above can be formulated as follows.

Let us assume that we are dealing with the special case in which &k is
an integer greater than 3 and

&,2:;35_[1” 2k 4 1) ]
2a VT(k—1)

It is possible to choose /3 and 8 as functions of A in the neighbor-
hood of the point =0 = X = 0, so that the motion of the system with
initial conditions 1, (0) = th, (0) = 0, ¥, "(0) = A, + kA .3, and ¢0,"(0) =
A,, + ®A 3 be periodic with period 2(m + 8)k,. As a first approximation
we obtain the motion

{o

) hoi . ,
Y, (6 = :* sin ka t, b @) =2 co8 ket (i=1, 2)

Let us consider the case kB = 3, Here condition (2.8) becomes

T ki
(x4 331 V) Qo <K‘> — (2 + 32 V) Q (7;) =0 (2.10)
By calculation we arrive at
81(11.578-—3023 V'7) N3 4 2187 (47 V7 — 119y N2 —
— 2U8T(61 VT —154) N — (1351-+1217V T) =0 240
Let us denote the left-hand side of (2.11) by the symbol z(N). Direct
verification will show that z(— 1/6) > 0, 2(0) < 0, and z(+ e ) > 0, It

follows from this that the equation z(N) = 0 has roots N1 and N& in the
intervals —1/6 < N, <0, and N, > 0. In addition, if ~ 1/6 ¢ N 0, then

2 (N) = 2187 (47T V7T — 119) (— N) -+ 2187 (1 V' 7 — 154) (— N) — 81 (11578 —

— 3023V 7) (— V) — (1351 + 1217 V T) < 2187 (47 VT — 119) 55 +

+729(61V7_—154)-§,—-(1351+1217 V<o
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It follows that (2,11) has only one real root, which is positive and
simple, Thus condition (2.7), which here takes on the form Ny £ 0, is
satisfied. We may therefore formulate the following result.

If k=3 and o = 3(14 — 5177)g/28a, it is possible to choose 3 and
8 as functions of A in the neighborhood of the point 8 =8 =A = 0 so
that with the initial conditions

$1(0) = $2(0) =0, $1" (0) = hax + 3Xu (¥ + B), $2 (0) = Roa + 2 (V 4 B)
the motion will be periodic with period 2(m + 3)/k2. Here N is the only
root of (2.11).

The first approximation gives

1 . .
¢quij%mmn%g+%ﬁm@n (=1, 2

;" (1) = 3r; NV cos 3kyt + A,y cos Keat
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